Sem-III Diploma Exam 2023 (Odd)

[Time: 3:00 Hours] (Civil Engineering / Civil (Rural) Engineering) (Theory) **Applied Mathematics - II (1615301)**

[Max. Marks: 70]

All questions are compulsory. (सभी प्रश्न अनिवार्य है |)

Marks are mentioned on the right side of each question. (अंक सभी प्रश्न के दाई ओर अंकित किये हैं)

Group (A) (ग्रप -ए)

Q.1 Choose the most suitable answer from the following options.

(1*20=20)

(सर्वाधिक उपर्युक्त विकल्प को चुनकर लिखें |) :-

The value of $\int \tan(2x+3)dx$ is $(\int \tan(2x+3)dx$ का मान है)

(a) $\frac{1}{3}\log(2x+3) + c$ (b) $\frac{1}{2}\log\sec(2x+3) + c$ (c) $\log\sec(2x+3) + c$ (d) None of these (इनमें से कोई नहीं)

The value of $\int \frac{dx}{1+16x^2} dx$ ($\int \frac{dx}{1+16x^2} dx$ का मान है |) ii.

(a) $\tan^{-1} 4x + c$ (b) $\frac{1}{2} \tan^{-1} 4x + c$ (c) $\frac{1}{4} \tan^{-1} 4x + c$

(d) None of these (इनमें से कोई नहीं)

The value of $\int \sqrt{1-\cos 2x} \, dx$ ($\int \sqrt{1-\cos 2x} \, dx$ का मान है |)

(a) $\sqrt{2}\cos x + c$

(b)- $\sqrt{2}\cos x + c$ (c) $-\sqrt{2}\sin x + c$

(d) None of these (इनमें से कोई नहीं)

The value of $\int \csc x. \, dx$ is $(\int \csc x. \, dx$ का मान है |)

(a) $\log \cot \frac{x}{2} + c$

(b) $\log \tan x + c$ (c) $\log \tan \frac{x}{2} + c$

(d) None of these (इनमें से कोई नहीं)

The value of $\int \sec x^0 \cdot \tan x^0 \cdot dx$ ($\int \sec x^0 \cdot \tan x^0 \cdot dx$ का मान है |) v.

(a) $\frac{180}{\pi} \sec x^0 + c$

(b) $\frac{\pi}{180} \sec x^0 + c$ (c) $\sec x^0 + c$

(d) None of these (इनमें से कोई नहीं)

The value of $\int \frac{1}{1+\cos 2x} dx \left(\int \frac{1}{1+\cos 2x} dx \right)$ का मान है |)

(a) $\frac{1}{2} \tan x + c$

(c) $\frac{1}{2} \cot x + c$

(d) None of these (इनमें से कोई नहीं)

The value of $\int_0^{\frac{\pi}{2}} \sin x \cdot dx \ (\int_0^{\frac{\pi}{2}} \sin x \cdot dx$ का मान है |) vii.

(a) 2

(c) 0

(d) None of these (इनमें से कोई नहीं)

The value of $\int_0^{\pi/4} \sec^2 \theta . d\theta \left(\int_0^{\pi/4} \sec^2 \theta . d\theta \right)$ का मान है |) viii.

(a) -1

(d) None of these (इनमें से कोई नहीं)

The area between x-axis and the curve y=sin x from x=0 to x= π is ix.

(वक्र है $y=\sin x$ और x-अक्ष के बीच का क्षेत्रफल x=0 से $x=\pi$ तक होगा |)

(a) 1

(b) 2

(c) 0

(d) None of these (इनमें से कोई नहीं)

If f(x) is an even function then $\int_{-a}^{a} f(x) dx$ is (यदि f(x) एक सम फलन हो तो $\int_{-a}^{a} f(x) dx$ का मान है|) f(x) dx (b) 0^{0} (c) $\int_{0}^{a} f(x) dx$ (d) None of these (इनमें से कोई नहीं) X.

(a) $2\int_0^a f(x)dx$

Page 2 of 4 (1615301)

$$\mathbf{Q.3}$$
 Evaluate:- $\int_0^{\pi/2} \sin^3 \theta . \, d\theta$ (मान निकालें $\int_0^{\pi/2} \sin^3 \theta . \, d\theta$)

OR (अथवा)

Evaluate
$$\int_0^{\pi/2} \frac{\sqrt{\cos x} \cdot dx}{\sqrt{\cos x} + \sqrt{\sin x}}$$
(मान निकालें
$$\int_0^{\pi/2} \frac{\sqrt{\cos x} \cdot dx}{\sqrt{\cos x} + \sqrt{\sin x}}$$
)

Q.4 Solve the following differential equation
$$\frac{dy}{dx} = (x + y)^2$$

(निम्नांकित अवकल समीकरण को हल करें
$$\left| \frac{dy}{dx} = (x+y)^2 \right|$$

Solve the following differential equation
$$\sec x.\frac{dy}{dx}-y=\sin x$$
 (निम्नांकित अवकल समीकरण को हल करें $|\sec x.\frac{dy}{dx}-y=\sin x|$

Q.5 Solve the following differential equation
$$(x^2 - y^2) \frac{dy}{dx} = 2xy$$
 (निम्नांकित अवकल समीकरण को हल करें $|(x^2 - y^2) \frac{dy}{dx} = 2xy$)

OR (अथवा)

Find the standard deviation of Poisson distribution.

4

Fit a binomial distribution for the following data **Q.6**

(निम्नांकितः	आंकड़े में	व्दिपद	वितरण वि	फेट करें)	
	^	1		2	T

			17		
X	0	1	2	3	4
f	30	62	46	10	2

OR (अथवा)

Find the root of the equation $x^3 - 4x + 1 = 0$ by Newton-Raphson method (Three iteration only) (समीकरण $x^3 - 4x + 1 = 0$ का मूल न्यूटन —रैप्सन विधि से निकालें | (केवल तीन पुनरावृत्ति तक))

Group (C) (ग्रुप - सी)

0.7

Find the area of the region bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$, a > 0(परवलयों $y^2=4ax$ और $x^2=4ay$, a>0 से घिरे हुए क्षेत्र का क्षेत्रफल निकालें $|\)$

6

Show that the volume of a spherical cap of height h cut-off from a sphere of radius a is $\pi h^2 \left(a - \frac{h}{3}\right)$

6

6

6

(दिखलाये कि a त्रिज्या वाले गोले को काटने से बने h उचाई के गोलाकार टोपी का आयतन π $h^2\left(a-rac{h}{2}
ight)$)

Q.8

Find the center of gravity of rectangular area of base b and height h. (आयताकार क्षेत्र का गुरुत्व केन्द्र ज्ञात करें जिसका आधार b और ऊँचाई h है \mid)

OR (अथवा)

Find the moment of inertia of a thin uniform rod of length 2a about a line through its center perpendicular to the rod.

(2a लम्बाई के पतले समरूप छड़ का जड़त्व आघूर्ण एक रेखा के परित: जो छड़ के लम्बवत है निकालें |)

(1615301)

Q.9 A body moves from rest at point 0 so that its acceleration after t seconds from 0 is $\frac{1}{(t+2)^2}$. Find the distance described in 9 seconds and its velocity then.

(एक कण बिन्दु 0 से विरामावस्था में चलना प्रारम्भ करता है| t सेकेण्ड के बाद 0 बिन्दु से कण का त्वरण $\frac{1}{(t+2)^2}$ हो जाता है| कण व्दारा 9 सेकेण्ड में तय की गई दरी और उसका वेग ज्ञात करें |)

OR (अथवा)

95% of students at college are between 1.1m and 1.7 m tall. Find mean and S.D. assuming normal distribution.

(कॉलेज के 95% छात्रों की लम्बाई 1.1मी. और 1.7 मी. के बीच है | किएपत सामान्य वितरण का माध्य तथा मानक विचलन निकालें |)

Q.10 Solve the following differential equation $\frac{dy}{dx} = \frac{3y+2x+4}{4x+6y+5}$ (निम्नांकित अवकल समीकरण को हल करें $|\frac{dy}{dx} = \frac{3y+2x+4}{4x+6y+5}|$ OR (अथवा)

A particle moving in a straight line with S.H.M. has velocities ϑ_1 and ϑ_2 when its distance from the centre are x_1 and x_2 respectively. Show that the period of motion is $2\pi\sqrt{\frac{x_1^2-x_2^2}{\vartheta_2^2-\vartheta_1^2}}$ (एक कण जो S.H.M. में एक सरल रेखा में चल रहा है जिसका वेग ϑ_1 और ϑ_2 है जब इसका केन्द्र से दूरी क्रमश: x_1 और x_2 है | दिखाये कि गित का आवर्तकाल $2\pi\sqrt{\frac{x_1^2-x_2^2}{\vartheta_2^2-\vartheta_1^2}}$)

Q.11 Solve the following equations by Gauss Elimination method. x+y+z=4, 2x+y+z=5, and 3x+2y+z=7 (निम्नांकित समीकरण को गौस एलीमेशन विधि से हल करें |x+y+z=4, 2x+y+z=5, 3x+2y+z=7)

OR (अथवा)

Solve the following equations by Gauss-Seidal method. (Two iteration only) 8x + 2y + 3z = 30, x - 9y + 2z = 1, 2x + 3y + 6z = 31 (निम्नांकित समीकरण को गौस सेडेल विधि से हल करें | (केवल दो पुनरावृत्ति तक) 8x + 2y + 3z = 30, x - 9y + 2z = 1, 2x + 3y + 6z = 31)

_____*****

Page **4** of **4** (1615301)

6

6

6